Wednesday, February 4, 2026
HomeHealthcareIntroducing Cisco’s Built-in AI Safety and Security Framework

Introducing Cisco’s Built-in AI Safety and Security Framework

The New Baseline for AI Safety

AI is now not an experimental functionality or a back-office automation software: it’s turning into a core operational layer inside fashionable enterprises. The tempo of adoption is breathtaking. But, in response to Cisco’s 2025 AI Readiness Indexsolely 29 % of corporations consider they’re adequately outfitted to defend towards AI threats and solely 33 % have a proper change-management plan for guiding accountable adoption.

Executives and leaders more and more discover themselves in a troubling place: they perceive cybersecurity, however AI safety feels overseas. People, organizations, and governments can’t adequately comprehend or reply to the implications of such quickly evolving expertise and the threats that ensue: organizations are deploying methods whose conduct evolves, whose modes of failure are usually not absolutely understood, and whose interactions with their setting are dynamic and generally unpredictable.

Cisco’s Built-in AI Safety and Security Framework (additionally referred to on this weblog as “AI Safety Framework”) gives a basically completely different method. It represents one of many first holistic makes an attempt to categorise, combine, and operationalize the total vary of AI dangers, from adversarial threats, content material security failures, mannequin and provide chain compromise, agentic behaviors and ecosystem dangers (e.g., orchestration abuse, multi-agent collusion), and organizational governance. This vendor-agnostic framework supplies a construction for understanding how fashionable AI methods fail, how adversaries exploit them, and the way organizations can construct defenses that evolve alongside functionality developments.

A Fragmented Panorama—and the Want for Integration

For years, organizations that tried to safe AI pieced collectively steering from disparate sources. MITRE ATLAS helped outline adversarial ways in machine studying methods. NIST’s Adversarial Machine Studying taxonomy described assault primitives. OWASP revealed High 10 lists for LLM and agentic dangers. Frontier AI labs like Google, OpenAI, and Anthropic shared inside security practices and ideas. But every of those efforts targeted on a selected slice of the chance panorama, providing items of the puzzle however cease wanting offering a unified, end-to-end understanding of AI danger.

What has been lacking is a cohesive mannequin—one which seamlessly spans security and safety, runtime and provide chain, mannequin conduct and system conduct, enter manipulation and dangerous outputs. Cisco’s evaluation makes the hole clear: no present framework covers content material harms, agentic dangers, provide chain threats, multimodal vulnerabilities, and lifecycle-level publicity with the completeness wanted for enterprise-grade deployment. The true world doesn’t phase these domains, and adversaries actually don’t both.

Evaluation of protection throughout AI safety taxonomies and frameworks

A New Paradigm for Understanding AI Threat

AI safety and security dangers current very actual issues for organizations. Taken collectively, AI safety and AI security kind complementary dimensions of a unified danger framework: one involved with defending AI methods from threats, and the opposite with guaranteeing that their conduct stays aligned with human values and ethics. Treating these domains in tandem can allow organizations to construct AI methods that aren’t solely strong and dependable, but additionally accountable and worthy of belief.

We outline them as:

  • AI safety: the self-discipline of guaranteeing AI accountability and defending AI methods from unauthorized use, availability assaults, and integrity compromise throughout the AI lifecycle.
  • AI security: serving to guarantee AI methods behave ethically, reliably, pretty, transparently, and in alignment with human values.

Cisco’s Built-in AI Safety and Security Framework is constructed upon 5 design components that distinguish it from prior taxonomic efforts and embody an evolving AI risk panorama: the mixing of AI threats and content material harms, AI growth lifecycle consciousness, multi-agent coordination, multimodality, and audience-aware utility.

(1) Integration of threats and harms: One core innovation of Cisco’s framework is its recognition that AI safety and AI security are inseparable. Adversaries exploit vulnerabilities throughout each domains, and oftentimes, hyperlink content material manipulation with technical exploits to attain their goals. A safety assault, akin to injecting malicious directions or corrupting coaching information, typically culminates in a security failure, akin to producing dangerous content material, leaking confidential info, or producing undesirable or dangerous outputs.

Conventional approaches have handled security and safety as parallel tracks. Our AI Safety Framework makes an attempt to mirror the fact of recent AI methods: the place adversarial conduct, meant and unintended system conduct, and person hurt are interconnected. The AI Safety Framework’s taxonomy brings these components right into a single construction that organizations can use to grasp danger holistically and construct defenses that deal with each the mechanism of assault and the ensuing impression.

(2) AI lifecycle consciousness: One other defining characteristic of the AI Safety Framework is its anchor within the full AI lifecycle. Safety issues throughout information assortment and preprocessing differ from these throughout mannequin coaching, deployment and integration, software use, or runtime operation. Vulnerabilities which are irrelevant throughout mannequin growth might change into important as soon as the mannequin positive factors entry to tooling or interacts with different brokers. Our AI Safety Framework follows the mannequin throughout this whole journey, making it clear the place completely different classes of danger emerge and the way they might evolve, and permitting organizations to implement defense-in-depth methods that account for a way dangers evolve as AI methods progress from growth to manufacturing.

(3) Multi-agent orchestration: The AI Safety Framework also can account for the dangers that emerge when AI methods work collectively, encompassing orchestration patterns, inter-agent communication protocols, shared reminiscence architectures, and collaborative decision-making processes. Our taxonomy accounts for related dangers that emerge in methods with autonomous planning capabilities (brokers), exterior software entry (MCP1), persistent reminiscence, and multi-agent collaboration—threats that will be invisible to frameworks designed for earlier generations of AI expertise.

(4) Multimodality issues: The AI Safety Framework additionally displays the fact that AI is more and more multimodal. Threats can emerge from textual content prompts, audio instructions, maliciously constructed photographs, manipulated video, corrupted code snippets, and even embedded alerts in sensor information. As we proceed to analysis how multimodal threats can manifest, treating these pathways constantly is important, particularly as organizations undertake multimodal methods in robotics and autonomous automobile deployments, buyer expertise platforms, and real-time monitoring environments.

(5) An audience-aware safety compass: Lastly, the framework is deliberately designed for a number of audiences. Executives can function on the stage of attacker goals: broad classes of danger that map on to enterprise publicity, regulatory issues, and reputational impression. Safety leaders can deal with methods, whereas engineers and researchers can dive deeper into subtechniques. Drilling down even additional, AI crimson groups and risk intelligence groups can construct, take a look at, and consider procedures. All of those teams can share a single conceptual mannequin, creating alignment that has been lacking from the business.

The AI Safety Framework supplies groups with a shared language and psychological mannequin for understanding the risk panorama past particular person mannequin architectures. The framework consists of the supporting infrastructure, advanced provide chains, organizational insurance policies, and human-in-the-loop interactions that collectively decide safety outcomes. This permits clearer communication between AI builders, AI end-users, enterprise capabilities, safety practitioners, and governance and compliance entities.

Contained in the AI Safety Framework: A Unified Taxonomy of AI Threats

An important part of the AI Safety Framework is the underlying taxonomy of AI threats that’s structured into 4 layers: goals (the “why” behind assaults), methods (the “how”), subtechniques (particular variants of “how”), and procedures (real-world implementations). This hierarchy creates a logical, traceable pathway from high-level motivations to detailed implementation.

The framework identifies nineteen attacker goals, starting from purpose hijacking and jailbreaks to communication compromise, information privateness violations, privilege escalation, dangerous content material era, and cyber-physical manipulation. These goals map on to noticed patterns and threats, to vulnerabilities organizations are encountering as they scale AI adoption, and at last lengthen to areas which are technically possible, although not but noticed exterior of a analysis setting. Every goal turns into a lens by way of which executives and leaders can perceive their publicity: which enterprise capabilities may very well be impacted, which regulatory obligations is likely to be triggered, and which methods require heightened monitoring.

Strategies and subtechniques present the specificity essential for operational groups. These embody over 150 methods and subtechniques akin to immediate injections (each direct and oblique), jailbreaks, multi-agent manipulation, reminiscence corruption, provide chain tampering, environment-aware evasion, software exploitation, and dozens extra. The richness of this layer displays the complexity of recent AI ecosystems. A single malicious immediate might propagate throughout brokers, instruments, reminiscence shops, and APIs; a single compromised dependency might introduce unobserved backdoors into mannequin weights; or a single cascaded failure might trigger a complete multi-agent workflow to diverge from its meant purpose.


Screenshot of the AI Safety Framework’s Taxonomy Navigator

The protection taxonomy embedded throughout the framework is equally strong. It consists of twenty-five classes of dangerous content material, starting from cybersecurity misuse to security and content material harms to mental property compromise and privateness assaults. This breadth acknowledges that many AI failures are emergent behaviors that may nonetheless trigger real-world hurt. A unified taxonomy ensures that organizations can consider each malicious inputs and dangerous outputs by way of a coherent lens.

Alongside that vein, there are further mannequin context protocol (MCP), agentic, and provide chain risk taxonomies embedded throughout the AI Safety Framework. Protocols like MCP and A2A govern how LLMs interpret instruments, prompts, metadata, and execution environments, and when these parts are tampered with, impersonated, or misused, benign agent operations could be redirected towards malicious targets. The MCP taxonomy (which at present covers 14 risk sorts) and our A2A taxonomy (which at present covers 17 risk sorts) are each standalone sources which are additionally built-in into AI Protection and in our open supply instruments: MCP Scanner and A2A Scanner. Lastly, provide chain danger can be a core dimension of lifecycle-aware AI safety. We’ve developed a taxonomy that covers 22 distinct threats and is equally built-in into AI Protection, our companions in mannequin safety, and different instruments we’re growing for the open supply group.

Cisco’s Built-in AI Safety and Security Framework gives some of the full, forward-looking approaches accessible in the present day. At a time when AI is redefining industries, that readability isn’t merely beneficial—it’s important. This framework can be built-in into Cisco AI Protection, the place threats are recognized with related indicators and mitigation methods. Navigate our Built-in AI Safety and Security Framework in the present day. We sit up for working with the group to deepen the notice and strengthen defenses towards this novel ecosystem of AI threats.

RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Recent Comments